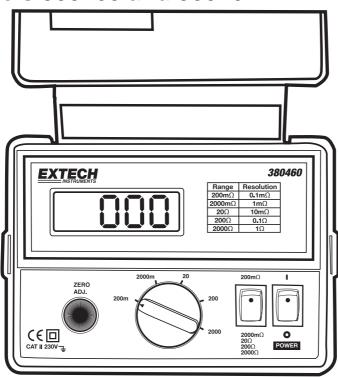
User's Guide


99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431

Visit us at www.TestEquipmentDepot.com

Back to the Extech 380460 Product Page

Precision Milliohm Meters

Models 380460 and 380462

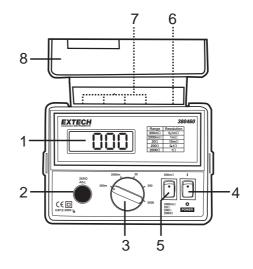
Introduction

Congratulations on your purchase of the Extech Milliohm Meter Model 380460 (110V) or Model 380462 (220V). The milliohm meters are enclosed in rugged carrying cases for durability. Measurements are made with Kelvin test leads (supplied) for optimal accuracy in five (5) selectable ranges. Careful use of this meter will provide years of reliable service.

Specifications

General Specifications

Circuit	Custom one-chip LSI microprocessor circuit		
Display	0.7" (18 mm) LCD with 2000 display counts		
Measurement terminals	4-Terminal Kelvin type		
Measurement ranges	Five (5) ranges (200m, 2, 20, 200, 2000Ω ohms)		
Zero Adjust	±50 count adjustment		
Sampling Time	Approximately 0.4 seconds		
Over input indication	Indication of "1"		
Operating Temperature	32 °F to 122 °F (0 °C to 50 °C)		
Operating Humidity	80% Relative Humidity max.		
Power Supply	110V (380460) or 220V (380462) ±15%, 50/60Hz		
Power Consumption	Less than 2 VA		
Weight	1.32 lbs (600g)		
Dimensions	6.3 x 4.72 x 3.35" (160 x 120 x 85 mm) with cover		
Accessories	Power Cable and 4-wire Kelvin clip leads		

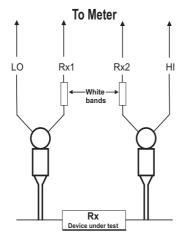

Range Specifications

		Test		Open Circuit
Range	Resolution	Current	Accuracy	Voltage
200 mΩ	0.1 m Ω	100mA	± 0.75% + 4 digits	3.8V
2 Ω	1mΩ	10mA	± 0.75% + 2 digits	3.4V
20 Ω	10m Ω	10mA	± 0.75% + 2 digits	3.4V
200 Ω	0.1 Ω	1mA	± 0.75% + 2 digits	3.2V
2000 Ω	1 Ω	1mA	± 0.75% + 2 digits	3.2V

Note: Specifications tested using RF Field Strength <3V/m and frequency <30MHz

Meter Description

- 1. LCD Display
- 2. Zero adjust knob
- 3. Range Dial
- 4. Power switch
- 5. $200m\Omega$ select switch
- 6. AC power cord
- 7. Kelvin lead to meter connections
- 8. Carrying case

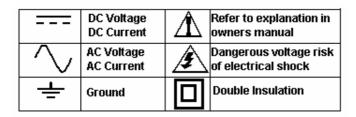


Operation

Basic Principles of 4-wire Measurements

For each range, the meter provides a specific amount of test current (refer to General Specifications) which flows from the HI to the LO meter terminal and therefore from the HI to the LO clip lead (Refer to the diagram). This is the current that ultimately passes through the device under test (RX in diagram below).

Once the test current is applied to the device under test, clip leads Rx1 & Rx2 measure the voltage drop across the device under test. The following equations detail how the meter accomplishes its measurement tasks.

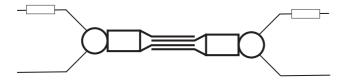


Measurement Equations

Vx = Is x Rx:

Where Vx is the voltage (measured by the meter) across the device under test; Is is the test current; Rx is the resistance of the device under test. From $Vx = Is \ x \ Rx$, the meter moves to the next step which is: Rx = Vx/Is. With this equation the meter determines the resistance of the device under test. Note that the measured resistance ($Rx1 \ Rx2$) is not affected by stray resistance since the test current is supplied directly to the device under test. This is the advantage of the 4-wire Kelvin lead configuration over 2-wire methods which introduce errors into low resistance measurements.

International Symbols



Powering the Meter

Connect the meter to the correct power source (110 or 220VAC); the Model 380460 uses 110VAC and the Model 380462 uses 220VAC (note that these meters are NOT interchangeable). Do not apply voltage to the meter input measurement terminals. Meter damage may result.

Measurement Procedure

- 1. Rotate the Range select switch to the 200m range to prepare for zeroing. Ensure that 200m is selected on the 200m select switch.
- 2. Perform a Zero Adjustment per the following:
 - Short the Kelvin Clips as shown in the diagram below.
 - Rotate the Zero Adjust Knob until the meter indicates zero units.

- Select the desired measuring range via the rotary Range select switch. When using the 200m range, put the 200m select switch to the 200m position; for all other measurements put this switch in the opposite position.
- 4. Either clip the leads onto a component or clip the leads between two points in a circuit.
- 5. Observe the meter reading.