Tektronix[®]

Spectrum Analyzer

RSA600A Series Laboratory Spectrum Analyzer Datasheet

The RSA600A Series USB spectrum analyzers offer high bandwidth laboratory spectrum analysis in a small, very transportable package.

Features and benefits

- 9 kHz to 3.0/7.5 GHz frequency range covers a broad range of analysis needs
- 40 MHz acquisition bandwidth enables real time analysis for transient capture and vector analysis
- Amplitude accuracy of 0.2 dB to 3 GHz (95% confidence)
- Standard GPS/GLONASS/Beidou receiver
- Optional tracking generator for gain/loss, antenna and cable measurements
- Streaming capture can be used to record and play back long term events
- SignalVu-PC software offers real time signal processing with DPX Spectrum/Spectrogram to minimize time spent finding transient problems
- 100 µsec minimum signal duration with 100% probability of intercept ensure you see problems first time, every time
- Application programming interface included for development of custom programs
- Accessories including tablet PC, calibration kits, adapters and phasestable cables offer a complete solution for design, characterization, and manufacturing

Applications

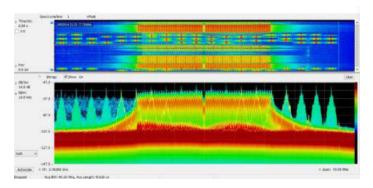
- · Characterization of RF devices, subsystems, and systems
- Manufacturing test
- Mobile field operations

The RSA600 Series gives you the bandwidth and analysis tools you need to succeed

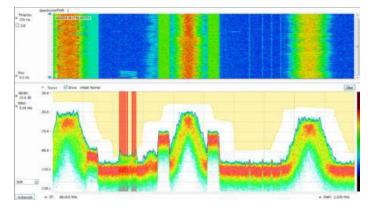
The RSA600 series brings real-time spectrum analysis and wide analysis bandwidth to solving the problems of engineers who need to characterize, validate and manufacture their designs. The heart of the system is the USB-based RF spectrum analyzer that captures 40 MHz bandwidths with great fidelity. With 70 dB dynamic range and frequency coverage to 7.5 GHz, you can fully characterize wideband signals up to 40 MHz bandwidths. The USB form factor moves the processing power to the PC of your choice, so you decide when you need more processing power or memory.

The optional tracking generator enables gain/loss measurements for quick tests of filters, amplifiers, duplexers and other components, and you can add cable and antenna measurements of VSWR, return loss, distance to fault, and cable loss as needed.

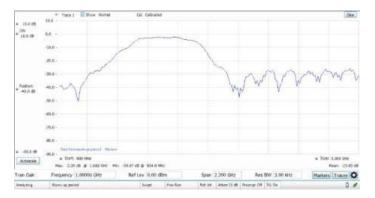
SignalVu-PC software offers rich analysis capability for your lab


The RSA600 series operates with SignalVu-PC, a powerful program used as the basis of Tek's traditional spectrum analyzers, offering a deep analysis capability previously unavailable in low-cost laboratory solutions. Real-time processing of the DPX spectrum/spectrogram is enabled in your PC, further reducing the cost of hardware. Customers who need programmatic access to the instrument can choose either the SignalVu-PC programmatic interface or use the included application programming interface (API) that provides a rich set of commands and measurements directly. Basic functionality of the free SignalVu-PC program is far from basic. Base version measurements are shown below.

Measurements and functions included in SignalVu-PC base version


General signal analysis	Description
Spectrum analyzer	Spans from 100 Hz to 7.5 GHz, 3 traces + math and spectrogram trace, 5 markers with power, relative power, integrated power, power density and dBc/Hz functions
DPX spectrum/spectrogram	Real time display of spectrum with 100% probability of intercept of 100 usec signals in up to 40 MHz span
Amplitude, frequency, phase vs. time, RF I and Q vs. time	Basic vector analysis functions
Time overview/navigator	Enables easy setting of acquisition and analysis times for deep analysis in multiple domains
Spectrogram	Analyze and re-analyze your signal in 2-D or 3-D waterfall display
AM/FM listening	Hear and record to file FM and AM signals
Signal recording	Record 40 MHz bandwidth for re- analysis in all domains including real time spectrum analysis (requires application SV56 for Playback)
Analog modulation analysis	Description
AM, FM, PM analysis	Measures key AM, FM, PM parameters
RF measurements	Description
Spurious measurement	User-defined limit lines and regions provide automatic spectrum violation testing across the entire range of the instrument.
Spectrum emission mask	User-set or standards-specific masks.
Occupied bandwidth	Measures 99% power, -xdB down points.
Channel power and ACLR	Variable channel and adjacent/alternate channel parameters.
MCPR	Sophisticated, flexible multi-channel power measurements.
CCDF	Complementary Cumulative Distribution Function plots the statistical variations in signal level.
Signal strength with audio tone	Measures signal strength and displays a spectrum and signal strength bar for interference hunting and signal quality

The RSA600A combined with SignalVu-PC offers advanced measurements


With 40 MHz of real-time bandwidth, the unique DPX spectrum/ spectrogram shows you every instance of an interfering or unknown signal, even down to 100 μs in duration. The following image shows a WLAN transmission (green and orange), and the narrow signals that repeat across the screen are a Bluetooth access probe. The spectrogram (upper part of the screen) clearly separates these signals in time to show any signal collisions.

Finding unexpected signals is easy with unattended mask monitoring. A mask can be created on the DPX spectrum display, and actions taken upon every violation, including stop, save a picture, save acquisition, or send an audible alert. In the illustration below, a mask violation has occurred in red on the mask, and a picture of the screen was saved as a result. Mask testing can be used for unattended monitoring and when playing back recorded signals, enabling testing for different violations on the same signals.

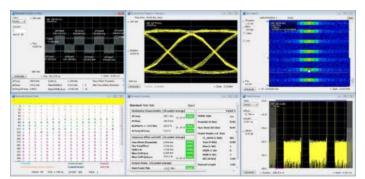
The tracking generator (Option 04 on the RSA600) is controlled via SignalVu-PC. Here you can enter start-stop frequencies, set number of steps in the span, adjust reference level, and normalize the tracking generator with a calibrate function. A bandpass filter response from 800 MHz to 3 GHz is shown below.

SignalVu-PC application-specific licenses

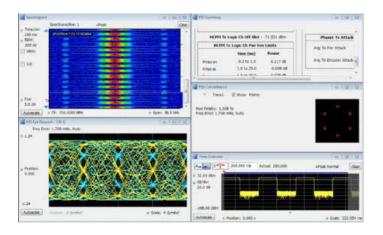
SignalVu-PC offers a wealth of application-oriented options including:

- General-purpose modulation analysis (27 modulation types including 16/32/64/256 QAM, QPSK, O-QPSK, GMSK, FSK, APSK)
- Buetooth® analysis of Low Energy, Basic Rate and Enhanced Data Rate
- P25 analysis of phase I and phase 2 signals
- WLAN analysis of 802.11a/b/g/j/p, 802.11n, 802.11ac
- LTE[™] FDD and TDD Base Station (eNB) Cell ID & RF measurements
- Mapping
- Pulse analysis
- AM/FM/PM/Direct Audio Measurement including SINAD, THD
- · Playback of recorded files, including complete analysis in all domains
- Signal classification and survey

See the separate SignalVu-PC data sheet for complete details and ordering information. Selected applications are illustrated below.


General purpose modulation analysis

SignalVu-PC application SV21 bundles 27 different modulation types into a single analysis package and offers constellation displays, eye diagrams, symbol tables, trellis diagrams, modulation quality summaries and more. Symbol rates and filter types are adjustable and an internal equalizer is included for signal optimization. The illustration below is of a TETRA-standard signal modulated with pi/4DQPSK modulation at 18.0 ksymbols/sec.

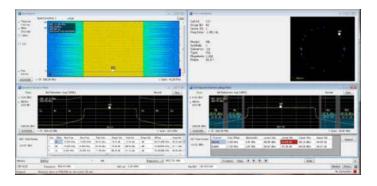

Bluetooth

With application SV27 you can perform Bluetooth SIG standard-based transmitter RF measurements in the time, frequency, and modulation domains. This application supports Basic Rate and Low Energy Transmitter measurements defined by Bluetooth SIG Test Specification RF.TS.4.1.1 for Basic Rate and RF-PHY.TS.4.1.1 for Bluetooth Low Energy. Application SV27 also automatically detects Enhanced Data Rate packets, demodulates them and provides symbol information. Data packet fields are color encoded in the Symbol table for clear identification. Pass/Fail results are provided with customizable limits and the Bluetooth presets make the different test set-ups push-button. The measurement below shows deviation vs. time, frequency offset and drift, and a measurement summary with pass/fail results.

APCO 25

SignalVu-PC application SV26 enables analysis of APCO P25 signals. The following image shows a Phase II HCPM signal being monitored for anomalies with the spectrogram while performing transmitter power, modulation, and frequency measurements to the TIA-102 standards specification.

LTE


Application SV28 enables the following LTE base station transmitter measurements:

- Cell ID
- Channel power
- Occupied bandwidth
- · Adjacent channel leakage ratio (ACLR)
- Spectrum emission mask (SEM)
- Transmitter off power for TDD

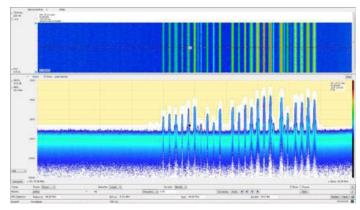
The measurements follow the definition in 3GPP TS Version 12.5 and support all base station categories, including picocells and femtocells. Pass/Fail information is reported and all channel bandwidths are supported.

The Cell ID preset displays the Primary Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS) in a Constellation diagram. It also provides Frequency Error.

The illustration below shows spectral monitoring with the spectrogram display combined with a Cell ID/Constellation, Spectrum Emission Mask and ACLR measurements.

WLAN 802.11a/b/g/j/p/n/ac

With options SV23, 24 and 25, sophisticated WLAN measurements are easy. On the 802.11ac (20 MHz) signal shown, the spectrogram shows the initial pilot sequence followed by the main signal burst. The modulation is automatically detected as 64 QAM for the packet and displayed as a constellation. The data summary indicates an EVM of -37.02 dB RMS, and burst power is measured at -17.32 dBm. SignalVu-PC applications are available for 802.11a/b/j/g/p, 802.11n, and 802.11ac to 40 MHz bandwidth.



Playback

Application SV56, Playback of recorded signals, can reduce hours of watching and waiting for a spectral violation to minutes at your desk reviewing recorded data.

Recording length is limited only by storage media size, and recording is a basic feature included in SignalVu-PC. SignalVu-PC application SV56 (Playback) allows for complete analysis by all SignalVu-PC measurements, including DPX Spectrogram. Minimum signal duration specifications are maintained during playback. AM/FM audio demodulation can be performed. Variable span, resolution bandwidth, analysis length, and bandwidth are all available.

In the illustration below, the FM band is being replayed, with a mask applied to detect spectral violations, simultaneous with listening to the FM signal at the center frequency of 92.3 MHz.

Specifications

All specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.

Frequency

Frequency range

RSA603A 9 kHz to 3 GHz RSA607A 9 kHz to 7.5 GHz

Frequency marker readout

accuracy

 \pm (RE × MF + 0.001 × Span) Hz RE: Reference Frequency Error

MF: Marker Frequency [Hz]

Reference frequency accuracy

Initial accuracy at Cal (30 min

warm-up)

±1 x 10⁻⁶

First year aging, typical Cumulative error (Initial

accuracy + temperature +

aging), typical

3 x 10⁻⁶ (1 year)

±1 x 10⁻⁶ (1 year)

 $\pm 0.9 \ x \ 10^{-6} \ (-10 \ to \ 60 \ ^{\circ}C)$ Temperature drift External reference input BNC connector, 50 Ω nominal

External reference input

frequency

Every 1 MHz from 1 to 20 MHz plus the following: 1.2288 MHz, 2.048 MHz, 2.4576 MHz, 4.8 MHz, 4.9152 MHz, 9.8304 MHz,

13 MHz, and 19.6608 MHz.

The spurious level on the input signal must be less than -80 dBc within 100 kHz offset to avoid on-screen spurious.

External reference input range ±5 ppm External reference input level -10 to +10 dBm

RF input

RF input

RF Input Impedance 50 Ω

RF VSWR (RF Attn = 20 dB), typical

< 1.2 (10 MHz to 3 GHz) < 1.5 (>3 GHz to 7.5 GHz)

RF VSWR preamp ON, typical

< 1.5 (10 MHz to 6 GHz, RF ATT=10 dB, preamp on)

< 1.7 (> 6 GHz to 7.5 GHz, RF ATT=10 dB, preamp on)

Maximum RF input level

Maximum DC voltage ±40 V (RF input)

Maximum safe input power +33 dBm (RF input, 10 MHz to 7.5 GHz, RF Attn ≥ 20 dB)

> +13 dBm (RF input, 9 kHz to 10 MHz) +20 dBm (RF input, RF Attn < 20 dB)

Datasheet

RF input

Maximum safe input power

+33 dBm (RF input, 10 MHz to 7.5 GHz, RF Attn ≥ 20 dB)

(Preamp On)

+13 dBm (RF input, 9 kHz to 10 MHz)

Maximum measurable input

power

+30 dBm (RF input, ≥10 MHz to Fmax, RF ATT Auto)

+20 dBm (RF input, <10 MHz, RF ATT Auto)

Input RF attenuator

0 dB to 51 dB (1 dB step)

Amplitude and RF

Amplitude and RF flatness

Reference level setting range

-170 dBm to +40 dBm, 0.1 dB step, (Standard RF input)

18 °C to 28 °C

±1.75 dB

Amplitude accuracy at all center frequencies

±0.75 dB

18 °C to 28 °C, typical-95%

-10 °C to 55 °C, typical

±3.0 dB

		confidence	
9 kHz ≤ 3.0 GHz	±0.8 dB	±0.2 dB	±1.0 dB
> 3 to 7.5 GHz	±1.5 dB	±0.6 dB	±2.0 dB
Center frequency range	18 °C to 28 °C	18 °C to 28 °C, typical-95% confidence	18 °C to 28 °C, typical

Amplitude Accuracy at All Center Frequencies - Preamp ON (18 $^{\circ}$ C to 28 $^{\circ}$ C , 10 dB RF Attenuator)

Preamp gain 27 dB at 2 GHz

21 dB at 6 GHz (RSA607A)

> 3 to 7.5 GHz

Channel response (amplitude and phase deviation), typical

For these specifications, use a flat top window for maximum CW amplitude verification accuracy with the RF attenuator setting at 10 dB.

Characteristic		Description		
Measurement center frequency	Span	Amplitude flatness, typical	Amplitude flatness, RMS, typical	Phase linearity, RMS, typical
9 kHz to 40 MHz	≤40 MHz ¹	±1.0 dB	0.60 dB	
>40 MHz to 4.0 GHz	≤20 MHz	±0.10 dB	0.08 dB	0.3°
>4 GHz to 7.5 GHz	≤20 MHz	±0.35 dB	0.20 dB	0.7°
>40 MHz to 4 GHz	≤40 MHz	±0.15 dB	0.08 dB	0.6°
>4 GHz to 7.5 GHz	≤40 MHz	±0.40 dB	0.20 dB	1.0°

Channel response (Amplitude flatness)

For these specifications, use a flat top window for maximum CW amplitude verification accuracy with the RF attenuator setting at 10 dB. The specifications are valid for the test center frequencies listed at the end of the table.

Characte	ristic	Description
Amplitude	e flatness	
	Span	
	≤20 MHz	±0.5 dB
	≤40 MHz	±0.5 dB
Test cent	er frequencies (in MHz)	21, 30, 500, 1000, 1500, 2000, 2500, 3000, 3500, 3950, 4050, 4500, 4850, 4950, 5500, 5750, 5850, 6200, 6650, 6750, 7000, 7450

¹ Span extents cannot exceed lower frequency limit of the instrument

Trigger

Trigger/Sync input, typical Voltage range: TTL, 0.0 V to 5.0 V

Trigger level (Schmitt trigger):

Positive-going threshold voltage: 1.6 V min, 2.1 V max Negative-going threshold voltage: 1.0 V min., 1.35 V max Impedance: 10 k ohms with schottky clamps to 0 V, +3.4 V

External trigger timing uncertainty >20 MHz to 40 MHz ac

>20 MHz to 40 MHz acquisition bandwidth: ±250 ns

Uncertainty increases as acquisition bandwidth is decreased.

Power trigger

Power trigger, typical Range: 0 dB to -50 dB from reference level, for trigger levels > 30 dB above the noise floor.

Type: Rising or falling edge

Trigger re-arm time: ≤ 100 µsec

Power trigger position timing uncertainty

>20 MHz to 40 MHz acquisition bandwidth: ±250 ns

Uncertainty increases as acquisition bandwidth is decreased.

Power trigger level accuracy ±1.5 dB for CW signal at tuned center frequency for trigger levels > 30 dB above the noise floor.

This specification is in addition to the overall amplitude accuracy uncertainty for SA mode.

Noise and distortion

All noise and distortion measurements are made with the Preamp off, except where noted.

3rd Order IM intercept (TOI) +12 dBm at 2.130 GHz

3rd Order IM intercept (TOI),

Preamp off, typical +10 dBm (9 kHz to 25 MHz)

+15 dBm (25 MHz to 3 GHz)

+15 dBm (3 GHz to 4 GHz, RSA607A) +8 dBm (4 GHz to 6 GHz, RSA607A) +10 dBm (6 GHz to 7.5 GHz, RSA607A)

Preamp on, typical -20 dBm (9 kHz to 25 MHz)

-15 dBm (25 MHz to 3 GHz) -15 dBm (3 GHz to 4 GHz)

-20 dBm (4 GHz to 6 GHz, RSA607A) -20 dBm (6 GHz to 7.5 GHz, RSA607A)

3rd Order Inter-modulation

-74 dBc at 2.130 GHz

distortion

Each signal level -25 dBm at the RF input. 2 MHz tone separation. Attenuator = 0, Reference level = -20 dBm.

Datasheet

Noise and distortion

3rd Order inter-modulation distortion

Preamp off, typical < -70 dBc (10 kHz to 25 MHz)

< -80 dBc (25 MHz to 3 GHz) < -80 dBc (3 GHz to 4 GHz)

< -70 dBc (4 GHz to 6 GHz, RSA607A) < -70 dBc (6 GHz to 7.5 GHz, RSA607A)

Each signal level -25 dBm at the RF input. 2 MHz tone separation. Attenuator = 0, Reference level = -20 dBm.

Preamp on, typical < -70 dBc (9 kHz to 25 MHz)

< -80 dBc (25 MHz to 3 GHz) < -80 dBc (3 GHz to 4 GHz)

< -70 dBc (4 GHz to 6 GHz, RSA607A) < -70 dBc (6 GHz to 7.5 GHz, RSA607A)

Each signal level -55 dBm at the RF input. 2 MHz tone separation. Attenuator = 0, Reference level = -50 dBm.

2nd Harmonic distortion, typical

2nd Harmonic distortion < -75 dBc (40 MHz to 1.5 GHz)

< -75 dBc (1.5 GHz to 3.75 GHz, RSA607A)

2nd Harmonic distortion,

Preamp on

< - 60 dBc , 40 MHz to 3.75 GHz, input frequency

2nd Harmonic distortion intercept

(SHI)

+35 dBm, 40 MHz to 1.5 GHz, input frequency

+35 dBm, 1.5 GHz to 3.75 GHz, input frequency

2nd Harmonic distortion intercept

(SHI), Preamp on

+15 dBm, 40 MHz to 3.75 GHz, input frequency

Displayed average noise level (DANL)

(Normalized to 1 Hz RBW, with log-average detector)

Frequency range	Preamp on	Preamp on, typical	Preamp off, typical
500 kHz to 1 MHz	-138 dBm/Hz	-145 dBm/Hz	-130 dBm/Hz
1 MHz to 25 MHz	-153 dBm/Hz	-158 dBm/Hz	-130 dBm/Hz
>25 MHz to 2 GHz	-159 dBm/Hz	-162 dBm/Hz	-141 dBm/Hz
>2 GHz to 3 GHz	-155 dBm/Hz	-162 dBm/Hz	-138 dBm/Hz
>3 GHz to 4.2 GHz, RSA607A	-152 dBm/Hz	-156 dBm/Hz	-138 dBm/Hz
>4.2 GHz to 6 GHz, RSA607A	-159 dBm/Hz	-162 dBm/Hz	-147 dBm/Hz
>6 GHz to 7.5 GHz, RSA607A	-155 dBm/Hz	-158 dBm/Hz	-145 dBm/Hz

Phase noise

Phase	

Offset	1 GHz CF	1 GHz CF (typical)	2 GHz CF (typical)	6 GHz CF, (RSA607A) (typical)	10 MHz (typical)
10 kHz	-94 dBc/Hz	-97 dBc/Hz	-96 dBc/Hz	-94 dBc/Hz	-120 dBc/Hz
100 kHz	-94 dBc/Hz	-98 dBc/Hz	-97 dBc/Hz	-96 dBc/Hz	-124 dBc/Hz
1 MHz	-116 dBc/Hz	-121 dBc/Hz	-120 dBc/Hz	-120 dBc/Hz	-124 dBc/Hz

Integrated Phase (RMS), typical

 7.45×10^{-3} radians @ 1 GHz 8.24×10^{-3} radians @ 2 GHz 9.34×10^{-3} radians @ 6 GHz Integrated from 10 kHz to 10 MHz

Spurious response

Residual spurious response (Reference = 30 dBm, RBW = 1 kHz) $<\!\!$ -75 dBm (500 kHz to 60 MHz), typical

< -85 dBm (>60 MHz to 80 MHz), typical

<-100 dBm (>80 MHz to 7.5 GHz)

Spurious response with Signal (Image suppression)

< -65 dBc (10 kHz to < 3 GHz, Ref= -30 dBm, Atten = 10 dB, RF input Level = -30 dBm, RBW = 10 Hz)

< -65 dBc (3 GHz to 7.5 GHz, Ref= -30dBm, Atten = 10 dB, RF input Level = -30 dBm, RBW = 10 Hz)

Spurious response with signal at CF

Offset ≥ 1 MHz

Frequency	Span ≤40 MHz, swept spans >40 MHz	
		Typical
1 MHz - 100 MHz		-75 dBc
100 MHz - 3 GHz	-72 dBc	-75 dBc
3 GHz - 7.5 GHz (RSA607A)	-72 dBc	-75 dBc

Spurious response with signal at CF

150 kHz \leq offset <1 MHz, Span=1 MHz

Frequency	Typical
1 MHz - 100 MHz	-70 dBc
100 MHz - 3 GHz	-70 dBc
3 GHz - 7.5 GHz (RSA607A)	-70 dBc ²

Spurious response with signal at other than CF, typical

Frequency Span ≤40 MHz, swept spans >40 MHz	
1 MHz – 25 MHz (LF Band)	-73 dBc
25 MHz – 3 GHz	-73 dBc
3 GHz – 7.5 GHz (RSA607A)	-73 dBc

² Power supply sidebands, 620-660 kHz: -67 dBc, typical

Datasheet

Spurious response

Spurious response with signal at

half-IF³

RSA603A, RSA607A < -60 dBc, (CF: 30 MHz to 3 GHz, Ref = -30 dBm, Atten = 10 dB, RBW = 10 Hz, Span = 10 kHz)

Signal frequency = 2310 MHz, RF input level = -30 dBm

RSA607A <-60 dBc, (CF 3 G Hz to 7.5 GHz, Ref= -30 dBm, Atten = 10 dB, RBW=10 Hz, Span=10 kHz)

RF input Level = -30 dBm

Local oscillator feed-through to

input connector, typical

< -70 dBm, preamp off.

< -90 dBm, preamp on. Attenuator = 10 dB.

Acquisition

IF bandwidth 40 MHz.

A/D converter 14 bits, 112 Ms/s.

Real-Time IF Acquisition Data 112 Ms/s, 16-bit integer samples.

GPS location

Format GPS/GLONASS/BeiDou

GPS antenna power 3 V, 100 mA maximum

Time to first fix, maximum Lock time ranges from 2 sec (hot) to 46 sec (cold start). -130 dBm input signal power.

Horizontal position accuracy GPS: 2.6 m

Glonass: 2.6 m BeiDou: 10.2 m GPS + Glonass: 2.6 m GPS + BeiDou: 2.6 m

Test conditions: 24 hr. static, -130 dBm, full power

Tracking generator (Option 04)

Tracking Generator (Option 04)

Frequency range 10 MHz to 3 GHz

10 MHz to 7.5 GHz

Sweep speed 6700 MHz/second, 101 points, 50 kHz RBW (11 mS per point)

Measured using a Panasonic Toughpad FZ-G1, Intel® Core™ i5-5300U 2.3 GHz Processor, 8 GB RAM, 256 GB SSD,

Windows®7 Pro.

Frequency resolution 100 Hz
TG output connector N type

VSWR < 1.8:1, 10 MHz to 7.5 GHz, -20 dBm output level

Maximum output power -3 dBm

³ This is an input signal at half of the IF frequency.

Tracking generator (Option 04)

Output power level setting

range

40 dB

Output power level step size

1 dB Output power level step size

accuracy

 $\pm 0.5 dB$

Output level accuracy

 \pm 1.5 dB, 10 MHz to 7.5 GHz, -20 dBm output level

Harmonics

< -22 dBc

Non-harmonic spurious

< -30 dBc; spurious < 2 GHz from TG output frequency

< -25 dBc; spurious ≥ 2 GHz from TG output frequency

Reverse power without

damage

40 Vdc, +20 dBm RF

Transmission gain measurement error Gain of +20 to -40 dB: ±1 dB

Transmission gain

measurement dynamic range

70 dB

SignalVu-PC standard measurements and performance

Measurements included

General signal analysis			
Spectrum analyzer	Spans from 1 kHz to 7.5 GHz Three traces plus math and spectrogram trace Five markers with power, relative power, integrated power, power density and dBc/Hz functions		
DPX Spectrum/Spectrogram	Real time display of spectrum with 100% probability of intercept of 100 µsec signals in up to 40 MHz span		
Amplitude, frequency, phase vs. time, RF I and Q vs. time	Basic vector analysis functions		
Time Overview/Navigator	Enables easy setting of acquisition and analysis times for deep analysis in multiple domains		
Spectrogram	Analyze and re-analyze your signal with a 2-D or 3-D waterfall display		
AM/FM listening	Hear, and record to file, FM and AM signals		
Analog modulation analysis			
AM, FM, PM analysis	Measures key AM, FM, PM parameters		
RF measurements			
Spurious measurement	User-defined limit lines and regions provide automatic spectrum violation testing across the entire range of the instrument		
Spectrum emission mask	User-defined or standards-specific masks		
Occupied Bandwidth	Measures 99% power, -xdB down points		
Channel Power and ACLR	Variable channel and adjacent/alternate channel parameters		
MCPR	Sophisticated, flexible multi-channel power measurements		
CCDF	Complementary Cumulative Distribution Function plots the statistical variations in signal level		

SignalVu-PC/RSA607A key characteristics

> Maximum span 40 MHz real-time

> > 9 kHz - 3 GHz swept 9 kHz - 7.5 GHz swept

Maximum acquisition time

1.0 s

SignalVu-PC standard measurements and performance

Minimum IQ resolution 17.9 ns (acquisition BW = 40 MHz)

Tuning Tables Tables that present frequency selection in the form of standards-based channels are available for the following.

Cellular standards families: AMPS, NADC, NMT-450, PDC, GSM, CDMA, CDMA-2000, 1xEV-DO WCDMA, TD-SCDMA, LTE,

WiMax

Unlicensed short range: 802.11a/b/j/g/p/n/ac, Bluetooth

Cordless phone: DECT, PHS

Broadcast: AM, FM, ATSC, DVBT/H, NTSC

Mobile radio, pagers, other: GMRS/FRS, iDEN, FLEX, P25, PWT, SMR, WiMax

DPX spectrum display

Spectrum processing rate (RBW = auto, trace length 801)

≤10,000/s

DPX bitmap resolution 201x801

Amplitude, frequency, signal density

Minimum signal duration for

Marker information

100 µs

100% probability of detection

Span: 40 MHz, RBW = Auto, Max-hold on

Due to the non-deterministic execution time of programs running under the Microsoft Windows OS, this specification may not be

met when the host PC is heavily loaded with other processing tasks

Span range (continuous

processing)

1 kHz to 40 MHz

Span range (swept) Up to maximum frequency range of instrument

Dwell time per step 50 ms to 100 s

Trace processing Color-graded bitmap, +Peak, -Peak, average

 Trace length
 801, 2401, 4001, 10401

 RBW range
 1 kHz to 10 MHz

DPX spectrogram display

Trace length, memory depth 801 (60,000 traces)

2401 (20,000 traces) 4001 (12,000 traces)

Time resolution per line 50 ms to 6400 s, user selectable

Spectrum display

Traces Three traces + 1 math trace + 1 trace from spectrogram for spectrum display

Trace functionsNormal, Average (VRMS), Max Hold, Min Hold, Average of LogsDetectorAverage (VRMS), Average, CISPR peak, +Peak, -Peak, SampleSpectrum trace length801, 2401, 4001, 8001, 10401, 16001, 32001, and 64001 points

RBW range 10 Hz to 10 MHz

SignalVu-PC standard measurements and performance

Analog modulation analysis

(standard)

AM demodulation accuracy,

typical

0 dBm input at center, carrier frequency 1 GHz, 1 kHz/5 kHz input/modulated frequency, 10% to 60% modulation depth

0 dBm input power level, reference level = 10 dBm, Atten=Auto

FM demodulation accuracy,

typical

±1% of span

±2%

0 dBm input at center, carrier frequency 1 GHz, 400 Hz/1 kHz input/modulated frequency

0 dBm input power level, reference level = 10 dBm, Atten=Auto

PM demodulation accuracy,

typical

±3% of measurement bandwidth

0 dBm input at center, carrier frequency 1 GHz, 1 kHz/5 kHz input/modulated frequency

0 dBm input power level, reference level = 10 dBm, Atten=Auto

Signal Strength display

Tone type

Signal strength indicator

Located at right side of display

Measurement bandwidth

Up to 40 MHz, dependent on span and RBW setting Variable frequency based on received signal strength

Sweep speed

Full-span sweep speed

Full span sweep speed, typical 5500 MHz/sec (RBW = 1 MHz)

5300 MHz/sec (RBW = 100 kHz) 3700 MHz/sec (RBW = 10 kHz) 950 MHz/sec (RBW = 1 kHz)

Measured using a Panasonic Toughpad FZ-G1, Intel[®] Core[™] i5-5300U 2.3 GHz Processor, 8 GB RAM, 256 GB SSD,

Windows®7 Pro.

Spectrum display is only measurement on screen

Tuning step time via API

1 ms

SignalVu-PC applications performance summary

AM/FM/PM and direct audio measurement (SVAxx-SVPC)

measurements)

Carrier frequency range (for modulation and audio

(1/2 × audio analysis bandwidth) to maximum input frequency

Maximum audio frequency

span

10 MHz

>0.1)

FM measurements (Mod. index Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, -Peak, Peak/Peak/2, RMS), SINAD, Modulation

Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

AM measurements Carrier Power, Audio Frequency, Modulation Depth (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total

Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

PM measurements

Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

Audio filters

Low pass, kHz: 0.3, 3, 15, 30, 80, 300, and user-entered up to 0.9 × audio bandwidth

High pass, Hz: 20, 50, 300, 400, and user-entered up to $0.9 \times audio bandwidth$

Standard: CCITT, C-Message

De-emphasis (µs): 25, 50, 75, 750, and user-entered

File: User-supplied .TXT or .CSV file of amplitude/frequency pairs. Maximum 1000 pairs

Performance characteristics, typical	Conditions: Unless otherwise stated, performance is given for: Modulation rate = 5 kHz AM depth: 50% PM deviation 0.628 Radians			
	FM	AM	PM	Conditions
Carrier Power accuracy	Refer to instrument ampl	itude accuracy		
Carrier Frequency accuracy	± 0.5 Hz + (transmitter frequency × ref. freq. error)	Refer to instrument frequency accuracy	± 0.2 Hz + (transmitter frequency × ref. freq. error)	FM deviation: 1 kHz / 10 kHz
Depth of Modulation accuracy	NA	± 0.2%+(0.01 * measured value)	NA	Rate: 1 kHz to 100kHz Depth: 10% to 90%
Deviation accuracy	± (1% × (rate + deviation)+50 Hz)	NA	± 100% * (0.01 + (measured rate/1 MHz))	FM Rate: 1 kHz to 1 MHz
Rate accuracy	± 0.2 Hz	± 0.2 Hz	± 0.2 Hz	FM deviation: 1 kHz to 100 kHz
Residual THD	0.10%	0.13%	0.1%	FM Deviation: 5 kHz Rate: 1 kHz to 10 kHz Depth: 50%
Residual SINAD	43 dB	58 dB	40 dB	Deviation 5 kHz Rate: 1 kHz to 10 kHz Depth: 50%

APCO P25 Measurements (SV26xx-SVPC)

Measurements

RF output power, operating frequency accuracy, modulation emission spectrum, unwanted emissions spurious, adjacent channel power ratio, frequency deviation, modulation fidelity, frequency error, eye diagram, symbol table, symbol rate accuracy, transmitter power and encoder attack time, transmitter throughput delay, frequency deviation vs. time, power vs. time, transient frequency behavior, HCPM transmitter logical channel peak adjacent channel power ratio, HCPM transmitter logical channel off slot power, HCPM transmitter logical channel power envelope, HCPM transmitter logical channel time alignment, cross-correlated markers

Modulation fidelity, typical

CF = 460 MHz, 815 MHz

C4FM \leq 1.0% HCPM \leq 0.5% HDQPSK \leq 0.25%

Input signal level is optimized for best modulation fidelity.

Bluetooth Measurements (SV27xx-

SVPC)

Modulation formats Basic Rate, Bluetooth Low Energy, Enhanced Data Rate - Revision 4.1.1

Packet types: DH1, DH3, DH5 (BR), Reference (LE)

Measurements Peak Power, Average Power, Adjacent Channel Power or InBand Emission mask, -20 dB Bandwidth, Frequency Error, Modulation

Characteristics including Δ F1avg (11110000), Δ F2avg (10101010), Δ F2 > 115 kHz, Δ F2/ Δ F1 ratio, frequency deviation vs. time with packet and octet level measurement information, Carrier Frequency f0, Frequency Offset (Preamble and Payload), Max Frequency Offset, Frequency Drift f₁-f₀, Max Drift Rate f_n-f₀ and f_n-f_{n-5}, Center Frequency Offset Table and Frequency Drift table,

color-coded Symbol table, Packet header decoding information, eye diagram, constellation diagram

Output power, In-band emissions and ACP

Level uncertainty: refer to instrument amplitude and flatness specification

Measurement range: signal level > -70 dBm

Modulation characteristics Deviation range: ±280 kHz

Deviation uncertainty (at 0 dBm)

<2 kHz ⁴ + instrument frequency uncertainty (basic rate) <3 kHz ⁴ + instrument frequency uncertainty (low energy) Measurement range: Nominal channel frequency ±100 kHz

Initial Carrier Frequency Tolerance (ICFT)

Measurement uncertainty (at 0 dBm): <1 kHz + instrument frequency uncertainty

Measurement range: Nominal channel frequency ±100 kHz

Carrier Frequency Drift Measurement uncertainty: <1 kHz + instrument frequency uncertainty

Measurement range: Nominal channel frequency ±100 kHz

General purpose digital modulation analysis (SVMxx-SVPC)

Modulation formats

BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 256QAM, PI/2DBPSK, DQPSK, PI/4DQPSK, D8PSK, D16PSK, SBPSK, OQPSK,

SOQPSK, MSK, GFSK, CPM, 2FSK, 4FSK, 8FSK, 16FSK, C4FM

Analysis period

Up to 81,000 samples

Measurement filter

Root Raised Cosine, Raised Cosine, Gaussian, Rectangular, IS-95 TX_MEA, IS-95 Base TXEQ_MEA, None

Reference Filter

Gaussian, Raised Cosine, Rectangular, IS-95 REF, None

Filter rolloff factor

 α : 0.001 to 1, in 0.001 steps

Measurements

Constellation, Demod I&Q vs. Time, Error Vector Magnitude (EVM) vs. Time, Eye Diagram, Frequency Deviation vs. Time,

Magnitude Error vs. Time, Phase Error vs. Time, Signal Quality, Symbol Table, Trellis Diagram

Symbol rate range

1 k symbols/s to 40 M symbols/s

Modulated signal must be contained entirely within the acquisition bandwidth

Adaptive equalizer

Linear, Decision-Directed, Feed-Forward (FIR) equalizer with coefficient adaptation and adjustable convergence rate. Supports modulation types BPSK, QPSK, QPSK, π/2-DBPSK, π/4-DQPSK, 8-DSPK, 16-DPSK, 16/32/64/128/256-QAM

⁴ At nominal power level of 0 dBm

QPSK Residual EVM (center

0.6 % (100 kHz symbol rate)

frequency = 2 GHz), typical

0.8 % (1 MHz symbol rate)
0.8 % (10 MHz symbol rate)
0.8 % (30 MHz symbol rate)

400 symbols measurement length, 20 Averages, normalization reference = maximum symbol magnitude

256 QAM Residual EVM (center frequency = 2 GHz),

0.6 % (10 MHz symbol rate) 0.7 % (30 MHz symbol rate)

typical

400 symbols measurement length, 20 Averages, normalization reference = maximum symbol magnitude

LTE Downlink RF measurements (SV28xx-SVPC)

Standard Supported 3GPP TS 36.141 Version 12.5

Frame Format supported FDD and TDD

Measurements and Displays Supported

Displays Adjacent Channel Leakage Ratio (ACLR), Spectrum Emission Mask (SEM), Channel Power, Occupied Bandwidth, Power vs. Time showing Transmitter OFF power for TDD signals and LTE constellation diagram for Primary Synchronization Signal, Secondary

Synchronization Signal with Cell ID, Group ID, Sector ID and Frequency Error.

ACLR with E-UTRA bands (typical, with noise correction)

1st Adjacent Channel 60 dB (RSA607A) 2nd Adjacent Channel 62 dB (RSA607A)

Mapping (MAPxx-SVPC)

Supported map types Pitney Bowes MapInfo (*.mif), Bitmap (*.bmp), Open Street Maps (.osm)

Saved measurement results

Measurement data files (exported results)

Map file used for the measurements

Google Earth KMZ file

Recallable results files (trace and setup files)

MapInfo-compatible MIF/MID files

Pulse measurements (SVPxx-SVPC)

Measurements (nominal) Average On Power, Peak Power, Average Transmitted Power, Pulse Width, Rise Time, Fall Time, Repetition Interval(seconds),

Repetition Interval (Hz), Duty Factor (%), Duty Factor (ratio), Ripple, Droop, Pulse-Pulse Frequency Difference, Pulse-Pulse Phase Difference, RMS Frequency Error, Max Frequency Error, RMS Phase Error, Max Phase Error, Frequency Deviation, Phase

Deviation, Time Stamp, Delta Frequency, Impulse Response, Overshoot

Minimum pulse width for

detection

150 ns

Average ON power at 18 °C to

28 °C, typical

±0.3 dB + absolute amplitude accuracy

For pulses of 300 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

To palaca of add his width or greater, duty cycles of .a to .oo i, and a/in ratio = ad ab

Duty factor, typical $\pm 0.2\%$ of reading

For pulses of 450 ns width or greater, duty cycles of .5 to .001, and S/N ratio \geq 30 dB

Average transmitted power,

typical

±0.5 dB + absolute amplitude accuracy

For pulses of 300 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

Peak pulse power, typical ±1.2 dB + absolute amplitude accuracy

For pulses of 300 ns width or greater, duty cycles of .5 to .001, and S/N ratio \geq 30 dB

Pulse width, typical ±0.25% of reading

For pulses of 450 ns width or greater, duty cycles of .5 to .001, and S/N ratio \geq 30 dB

Playback of recorded signals (SV56xx-SVPC)

> Playback file type R3F recorded by RSA607B

Recorded file bandwidth 40 MHz

File playback controls General: Play, stop, exit playback

> Location: Begin/end points of playback settable from 0-100% Skip: Defined skip size from 73 µs up to 99% of file size

Live rate: Plays back at 1:1 rate to recording time

Loop control: Play once, or loop continuously

Memory requirement Recording of signals requires storage with write rates of 300 MB/sec. Playback of recorded files at live rates requires storage with

read rates of 300 MB/sec.

WLAN Measurements, 802.11a/b/g/

j/p (SV23xx-SVPC)

Measurements WLAN power vs. time; WLAN symbol table; WLAN constellation; spectrum emission mask; error vector magnitude (EVM) vs.

symbol (or time), vs subcarrier (or frequency); mag error vs symbol (or time), vs. subcarrier (or frequency); phase error vs symbol (or time), vs. subcarrier (or frequency); channel frequency response vs. symbol (or time), vs. subcarrier (or frequency); spectral

flatness vs. symbol (or time), vs. subcarrier (or frequency)

Residual EVM - 802.11a/g/j /p (OFDM), 64-QAM, typical

2.4 GHz, 20 MHz BW: -39 dB

5.8 GHz, 20 MHz BW: -38 dB

Input signal level optimized for best EVM, average of 20 bursts, ≥16 symbols each

Residual EVM - 802.11b,

CCK-11, typical

2.4 GHz, 11 Mbps: 1.3 %

Input signal level optimized for best EVM, average of 1,000 chips, BT = .61

WLAN Measurements 802.11n

(SV24xx-SVPC)

WLAN power vs. time: WLAN symbol table: WLAN constellation; spectrum emission mask; error vector magnitude (EVM) vs.

symbol (or time), vs subcarrier (or frequency); mag error vs symbol (or time), vs. subcarrier (or frequency); phase error vs symbol (or time), vs. subcarrier (or frequency); channel frequency response vs. symbol (or time), vs. subcarrier (or frequency); spectral

flatness vs. symbol (or time), vs. subcarrier (or frequency)

EVM performance - 802.11n,

64-QAM, typical

Measurements

2.4 GHz, 40 MHz BW: -38 dB

5.8 GHz. 40 MHz BW: -38 dB

Input signal level optimized for best EVM, average of 20 bursts, ≥16 symbols each

WLAN Measurements 802.11ac (SV25xx-SVPC)

Measurements

WLAN power vs. time; WLAN symbol table; WLAN constellation; spectrum emission mask; error vector magnitude (EVM) vs.

symbol (or time), vs subcarrier (or frequency); mag error vs symbol (or time), vs. subcarrier (or frequency); phase error vs symbol (or time), vs. subcarrier (or frequency); channel frequency response vs. symbol (or time), vs. subcarrier (or frequency); spectral

flatness vs. symbol (or time), vs. subcarrier (or frequency)

EVM performance - 802.11ac,

256-QAM, typical

5.8 GHz, 40 MHz BW: -38 dB

Input signal level optimized for best EVM, average of 20 bursts, ≥16 symbols each

Datasheet

28 Volt noise source drive

28 Volt noise source drive output

Output Level

Output voltage turn ON/OFF

28 VDC @ 140 mA

Turn on: 100 µS

Turn off: 500 µS

Input and output ports

Inputs, outputs, and inferfaces

Trigger/Sync input

RF input
External frequency reference

input

frequency reference BNC, female

Tracking Generator Source

Output

GPS Antenna

USB Device Port

BNC, female N type, female

N type, female

SMA, female USB 3.0 – Type A

USB Status LED LED, dual color red/green

LED states:

Steady Red: USB power applied, or resetting Steady Green: Initialized, ready for use Blinking Green: Transferring data to host

Installation requirements

Maximum power dissipation (fully

loaded)

RSA600A: 45 W maximum.

Surge current 2 A peak maximum, at 25 °C (77 °F) for ≤ 5 line cycles, after the product has been turned off for at least 30 seconds.

Cooling clearance Bottom, top

0 mm (0 in.) with feet installed.

6.3 mm (0.25 in.) without feet installed.

Sides 0 mm (0 in.)

Rear: 38.1 mm (1.5 in.)

Physical characteristics

Physical characteristics

 Width
 222.3 mm (8.75 in)

 Height
 75.0 mm (2.95 in)

 Length
 358.6 mm (14.12 in)

 Net weight
 2.79 kg (6.15 pounds)

Environmental and safety

Temperature

 Operating
 -10 °C to +55 °C (+14 °F to +131 °F)

 Non-operating
 -51 °C to +71 °C (-60 °F to +160 °F)

Humidity

MIL-PRF-28800F Class 2

Operating:

5% to 95±5%RH (relative humidity) in the temperature range of +10 °C to 30 °C (+50 °F to 86 °F)

5% to $75\pm5\%$ RH above +30 °C to 40 °C (+86 °F to 104 °F) 5% to $45\pm5\%$ RH above +40 °C up to +55 °C (+86 °F to +131 °F)

<10 °C (+50 °F) humidity is uncontrolled; non-condensing

Altitude

 Operating
 Up to 3000 m (9,842 ft.)

 Non-operating
 Up to 12000 m (39,370 ft.)

Dynamics

Vibration

Operating Tektronix Class 3 Random Vibration Test at 0.31 GRMS: 5-500 Hz, 3 Axes at 10 min/axis

Non-Operating MIL-PRF-28800F Class 3

2.06 GRMS, 5 500 Hz, 10 minutes per axis, 3 axes (30 minutes total)

Shock

 Operating
 Test method per Military Standard MIL-PRF-28800F 1-4

 Non-Operating
 Exceeds the requirements of Military Standard MIL-PRF-28800F

Handling and transit

Bench handling, operating MIL-PRF-28800F Class 3

Transit drop, non-operating MIL-PRF-28800F Class 2

Ordering information

Models

RSA600A Series

USB Spectrum Analyzer, 40 MHz acquisition bandwidth.

The RSA600 requires a PC with Windows 7, Windows 8/8.1, or Windows 10, 64-bit operating system. A USB 3.0 connection is required for operation of the RSA600. 8 GB RAM and 20 GB free drive space is required for installation of SignalVu-PC. For full performance of the real time features of the RSA600, an Intel Core i7 4th generation processor is required. Processors of lower performance can be used, with reduced real-time performance. Storage of streaming data requires that the PC be equipped with a drive capable of streaming storage rates of 300 MB/sec.

Includes: USB 3.0 cable (2 M), A-A connection, screw lock, quick-start manual (printed), connector covers, power cord, (see power plug options), USB memory device with SignalVu-PC, API and documentation files.

Item	Description
RSA603A	USB real time spectrum analyzer, 9 kHz – 3.0 GHz, 40 MHz acquisition bandwidth
Option 04	Tracking generator, 10 MHz – 3.0 GHz
RSA607A	USB real time spectrum analyzer, 9 kHz - 7.5 GHz, 40 MHz acquisition bandwidth
Option 04	Tracking generator, 10 MHz – 7.5 GHz
RSA5600RACK	Rackmount, RSA500 and RSA600 Series. Holds 1 RSA500A or 2 RSA600A models

Options

RSA600A power plug options

North America power plug (115 V, 60 Hz) Opt. A0 Opt. A1 Universal Euro power plug (220 V, 50 Hz) Opt. A2 United Kingdom power plug (240 V, 50 Hz) Opt. A3 Australia power plug (240 V, 50 Hz) Opt. A4 North America power plug (240 V, 50 Hz) Opt. A5 Switzerland power plug (220 V, 50 Hz) Opt. A6 Japan power plug (100 V, 50/60 Hz) Opt. A10 China power plug (50 Hz) Opt. A11 India power plug (50 Hz) Opt. A12 Brazil power plug (60 Hz) Opt. A99 No power cord

RSA600A language options

Opt. L0 English manual
Opt. L1 French manual
Opt. L2 Italian manual
Opt. L3 German manual
Opt. L4 Spanish manual
Opt. L5 Japanese manual

Opt. L6 Portuguese manual

Opt. L7 Simplified Chinese manual

Opt. L8 Traditional Chinese manual

Opt. L10 Russian manual

Opt. L99 No manual

RSA600A service options

Opt. L9

Opt. C3 Calibration Service 3 Years
Opt. C5 Calibration Service 5 Years
Opt. D1 Calibration Data Report

Opt. D3 Calibration Data Report 3 Years (with Opt. C3)
Opt. D5 Calibration Data Report 5 Years (with Opt. C5)
Opt. R5 Repair Service 5 Years (including warranty)

Korean manual

Warranty

- RSA600 series warranty: 3 years.
- FZ-G1 tablet: 3-year warranty with Business Class Support (provided by Panasonic in region of purchase).

Tablet

Tablet controller available

A tablet controller intended for portable applications using the Tektronix RSA306B and RSA500A series spectrum analyzers can also be used with the RSA600A series. The Panasonic ToughPad FZ-G1 is available in limited geographies from Tektronix as shown in the ordering information below.

Item	Description	Regional availability
FZ-G1-N	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord.	Canada, Columbia, Ecuador, Mexico, Philippines, Singapore, United States
FZ-G1-C	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, digitizer pen and tether, battery charger with power cord	China
FZ-G1-I	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord	India
FZ-G1-E	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord.	Austria, Baltic States, Belgium, Bosnia, Bulgaria, Chile, Croatia, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Indonesia, Ireland, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand, Turkey
FZ-G1-U	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord.	Egypt, Kenya, Malaysia, United Kingdom
FZ-G1-B	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord	Brazil
FZ-G1-J	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord	Japan

Panasonic FZ-G1 accessories

Item	Description
FZ-VZSU84U ⁵	Li-ion battery, standard capacity
FZ-VZSU88U ⁵	Long-life battery pack for Panasonic ToughPad FZ-G1
FZ-BNDLG1BATCHRG	Single battery charger bundle for FZ-G1. 1 charger and 1 adapter
CF-LNDDC120	Lind 120 W 12-32 Volt input vehicle adapter for Toughbook and ToughPad
TBCG1AONL-P	Panasonic Toughmate always on case for FZ-G1
TBCG1XSTP-P	Infocase Toughmate X-strap for Panasonic FZ-G1

Not available in China, Hong Kong, Macau or Mongolia

Licenses

SignalVu-PC application-specific modules

Application license	Description
SVANL-SVPC	AM/FM/PM/Direct Audio Analysis - Node Locked License
SVAFL-SVPC	AM/FM/PM/Direct Audio Analysis - Floating License
SVTNL-SVPC	Settling Time (frequency and phase) measurements - Node Locked License
SVTFL-SVPC	Settling Time (frequency and phase) measurements - Floating License
SVMNL-SVPC	General Purpose Modulation Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License
SVMFL-SVPC	General Purpose Modulation Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO- Floating License
SVPNL-SVPC	Pulse Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License
SVPFL-SVPC	Pulse Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO- Floating License
SVONL-SVPC	Flexible OFDM Analysis - Node Locked License
SVOFL-SVPC	Flexible OFDM Analysis - Floating License
SV23NL-SVPC	WLAN 802.11a/b/g/j/p measurement - Node Locked License
SV23FL-SVPC	WLAN 802.11a/b/g/j/p measurement - Floating License
SV24NL-SVPC	WLAN 802.11n measurement (requires SV23) - Node Locked License
SV24FL-SVPC	WLAN 802.11n measurement (requires SV23) - Floating License
SV25NL-SVPC	WLAN 802.11ac measurement to work with analyzer of acquisition bandwidth <= 40 MHz (requires SV23 and SV24) or MDO - Node Locked License
SV25FL-SVPC	WLAN 802.11ac measurement to work with analyzer of acquisition bandwidth <= 40 MHz (requires SV23 and SV24) or MDO - Floating License
SV26NL-SVPC	APCO P25 measurement - Node Locked License
SV26FL-SVPC	APCO P25 measurement - Floating License
SV27NL-SVPC	Bluetooth measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License
SV27FL-SVPC	Bluetooth measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO- Floating License
MAPNL-SVPC	Mapping - Node Locked License
MAPFL-SVPC	Mapping - Floating License
SV56NL-SVPC	Playback of recorded files - Node Locked License
SV56FL-SVPC	Playback of recorded files - Floating License
CONNL-SVPC	SignalVu-PC live link to the MDO4000B series mixed-domain oscilloscopes - Node Locked License
CONFL-SVPC	SignalVu-PC live link to the MDO4000B series mixed-domain oscilloscopes - Floating License
SV2CNL-SVPC	WLAN 802.11a/b/g/j/p/n/ac and live link to MDO4000B to work with analyzer of acquisition bandwidth <= 40 MHz - Node Locked License
SV2CFL-SVPC	WLAN 802.11a/b/g/j/p/n/ac and live link to MDO4000B to work with analyzer of acquisition bandwidth <= 40 MHz - Floating License
SV28NL-SVPC	LTE Downlink RF measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License
SV28FL-SVPC	LTE Downlink RF measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Floating License
SV54NL-SVPC	Signal survey and classification - Node Locked License
SV54FL-SVPC	Signal survey and classification - Floating License
SV60NL-SVPC	Return loss, distance to fault, VSWR, cable loss - Node Locked License (requires Option 04 on RSA500/600, available June 2016)
SV60FL-SVPC	Return loss, distance to fault, VSWR, cable loss - Floating License (requires Option 04 on RSA500/600, available June 2016)
EDUFL-SVPC	Education-only version of all modules for SignalVu-PC - Floating License

Recommended accessories

Tektronix offers a wide variety of adapters, attenuators, cables, impedance converters, antennas and other accessories for the RSA600 series.

Genera	l purpose	RF ca	bles
--------	-----------	-------	------

012-1738-00 Cable,50 Ω, 40 inch,type-N(m) to type-N(M)

012-0482-00 Cable, 50 Ω, BNC (m) 3 foot (91 cm)

Adapters

103-0045-00 Adapter, coaxial, 50 Ω type-N(m) to type-BNC(f) 013-0410-00 Adapter, coaxial, 50 Ω type-N (f) to type-N (f)

013-0411-00 Adapter, coaxial, 50 Ω type-N (m) to type-N (f)

013-0412-00 Adapter, coaxial, 50 Ω , type-N(m) to type-N(m)

013-0402-00 Adapter, coaxial, 50 Ω type-N (m) to type-N 7/16(m)

013-0404-00 Adapter, coaxial, 50 Ω type-N(m) to type-7/16 (f)

013-0403-00 Adapter, coaxial, 50 Ω type-N(m) to type DIN 9.5(m)

013-0405-00 Adapter, coaxial, 50 Ω type-N(m) to type-DIN 9.5(f)

013-0406-00 Adapter, coaxial, 50 Ω type-N(m) to type-SMA(f)

013-0407-00 Adapter, coaxial, 50 Ω type-N(m) to type-SMA(m)

 $\textbf{O13-0408-00} \hspace{1.5cm} \textbf{Adapter, coaxial, 50 } \Omega \textbf{ type-N(m) to type-TNC(f)}$

013-0409-00 Adapter, coaxial, 50 Ω type-N(m) to type-TNC(m)

Attenuators and $50/75 \Omega$ pads

013-0422-00 Pad, 50/75 Ω , minimum loss, type-N(m) 50 Ω to type-BNC(f) 75 Ω

013-0413-00 Pad, 50/75 Ω , minimum loss, type-N(m) 50 Ω to type-BNC(m) 75 Ω

013-0415-00 Pad, 50/75 Ω , minimum loss, type-N(m) 50 Ω to type-F(m) 75 Ω

015-0787-00 Pad, 50/75 Ω , minimum loss, type-N(m) 50 Ω to type-F(f) 75 Ω

015-0788-00 Pad, 50/75 Ω , minimum loss, type-N(m) 50 Ω to type-N(f) 75 Ω

011-0222-00 Attenuator, fixed, 10 dB, 2 W, DC-8 GHz, type-N(f) to type-N(f)

011-0223-00 Attenuator, fixed, 10 dB, 2 W, DC-8 GHz, type-N(m) to type-N(f)

011-0224-00 Attenuator, fixed, 10 dB, 2 W, DC-8 GHz, type-N(m) to type-N(m)

011-0228-00 Attenuator, fixed, 3 dB, 2 W, DC-18 GHz, type-N(m) to type-N(f)

011-0225-00 Attenuator, fixed, 40 dB, 100 W, DC-3 GHz, type-N(m) to type-N(f)

011-0226-00 Attenuator, fixed, 40 dB, 50 W, DC-8.5 GHz, type-N(m) to type-N(f)

Filters, probes, demonstration

board

119-7246-00 Pre-filter, general purpose, 824 MHz to 2500 MHz, type-N (f) connector

119-7426 Pre-filter, general purpose, 2400 MHz to 6200 MHz, type-N (f) connector

119-4146-00 EMCO E/H-field probes

E/H field probes, lower cost

alternative

Available from Beehive http://beehive-electronics.com/

RSA-DKIT RSA Version 3 demo board with N-BNC adapter, case, antenna, instructions 011-0227-00 Bias-T, type N(m) RF, type N(f) RF+DC, BNC(f) Bias, 1 W, 0.5 A, 2.5 MHz-6 GHz

Tracking generator accessories

A variety of calibration kits and phase-stabilized cables are available for the RSA600 tracking generator when used with the optional cable and antenna measurements software available in June 2016. Contact Tektronix for additional information on this option.

Tektronix offers a variety of accessories to simplify your shopping for the complete solution in your lab.

Calibration Kits for

Phase-stabilized cables from Tekronix

ne-port measurements	for cable and antenna measurements
CALOSLNM	Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, Type-N(m), 50 ohm
CALOSLNF	Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, Type-N(f), 50 ohm
CALOSLNF	Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, 7/16 DIN(m)
CALOSL716F	Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, 7/16 DIN(f)
CALSOLT35F	Calibration kit, 4-in-1 3.5 mm (f) short, open, load, through, 13 GHz
CALSOLT35M	Calibration kit, 4-in-1 3.5 mm (m) short, open, load, through, 13 GHz
CALSOLTNF	Calibration kit, 4-in-1 type-N (f) short, open, load, through, 9 GHz
CALSOLTNM	Calibration kit, 4-in-1 type-N (m) short, open, load, through, 9 GHz
CALSOLT716F	Calibration kit, 4-in-1 7/16 (f) short, open, load, through, 6 GHz
CALSOLT716M	Calibration kit, 4-in-1 7/16 (m) short, open, load, through, 6 GHz
CALSOLTNF-75	Calibration kit, 4-in-1 type-N (f) short, open, load, through, 75 Ohm, 3 GHz
CALSOLTNM-75	Calibration kit, 4-in-1 type-N (m)short, open, load, through, 75 Ohm, 3 GHz
012-1745-00	Cable, rugged, phase-stable, type-N (m) to type-N (f), 5 ft or 1.5 m $$
012-1746-00	Cable, rugged, phase-stable, type-N(m) to type-N(f), 3.28 ft or 1 m $$
012-1747-00	Cable, rugged, phase-stable, type-N(m) to 7/16(f), 60 cm (23.6 in.)
012-1748-00	Cable, rugged, phase-stable, type-N(m) to 7/16(f), 3.28 ft or 1 m $$
012-1749-00	Cable, rugged, phase-stable, type-N(m) to 7/16(f), 5 ft or 1.5 m
012-1750-00	Cable, rugged, phase-stable, type-N(m) to 7/16(m), 3.28 ft or 1 m
012-1751-00	Cable, rugged, phase-stable, type-N(m) to 7/16(m), 5 ft or 1.5 m
012-1752-00	Cable, rugged, phase-stable, type-N(m) to 7/16(m), 60 cm (23.6 in.)
012-1753-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(f), 60 cm (23.6 in.)
012-1754-00	Cable, rugged, Phase-stable, type-N(m) to DIN 9.5(f), 3.28 ft or 1 m $$
012-1755-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(f), 5 ft or 1.5 m $$

Datasheet

012-1756-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(m), 3.28 ft or 1 m
012-1757-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(m), 5 ft or 1.5 m
012-1758-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(m), 60 cm (23.6 in.)
012-1759-00	Cable, rugged, phase-stable, type-N(m) to TNC(f), 3.28 ft or 1 m
012-1760-00	Cable, rugged, phase-stable, type-N(m) to TNC(f), 5 ft or 1.5 m
012-1761-00	Cable, rugged, phase-stable, type-N(m) to TNC(f), 60 cm (23.6 in.)
012-1762-00	Cable, rugged, phase-stable, type-N(m) to TNC(m), 60 cm (23.6 in.)
012-1763-00	Cable, rugged, phase-stable, type-N(m) to TNC(m), 3.28 ft or 1 m
012-1764-00	Cable, rugged, phase-stable, type-N(m) to TNC(m), 5 ft or 1.5 m $$
012-1765-00	Cable, rugged, phase-stable, type-N(m) to type-N(f), 60 cm (23.6 in.)
012-1766-00	Cable, rugged, phase-stable, type-N(m) to type-N(f), 3.28 ft or 1 m
012-1767-00	Cable, rugged, phase-stable, type-N(m) to type-N(m), 3.28 ft or 1 m
012-1768-00	Cable, rugged, phase-stable, type-N(m) to type-N(m), 60 cm (23.6 in.)
012-1769-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(f), 60 cm (23.6 in.)
012-1770-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(f), 3.28 ft or 1 m
012-1771-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(f), 5 ft or 1.5 m
012-1772-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(m) 60 cm (23.6 in.)
012-1773-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(m), 3.28 ft or 1 m $$
012-1774-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(m), 5 ft or 1.5 m $$

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

Product Area Assessed: The planning, design/development and manufacture of electronic Test and Measurement instruments.

Laboratory Spectrum Analyzer

99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431

